
 
 
 
 
 
 

GLUC User Guide 
 

Jeffrey Terstriep 
James Westervelt 

 
October 6, 2004 

 
 
 
GLUC is part of the Landuse Evolution and impact Assessment Model (LEAM) 
suite of software tools. 



 2 

Overview 

Purpose 
GLUC is a land use evolution model that is useful for predicting the urban growth 
patterns 10-50 years into the future across a large area based on alternative local, county, 
state, and federal land use investments and policies.  Examples include: 

• Location and size of proposed county roads, state and federal highways, and size 
and access points (on-ramps) for limited-access (e.g. interstate) highways. 

• Zoning 
• Purchases of property (or property rights) to limit development. 
• Construction of lakes and reservoirs. 
• Establishment of permanent natural areas. 
• Location of new employment centers. 

 
The output of GLUC is a time-series of land use patterns that are predicted to develop 
based on the initial land use pattern, the land use investments and policies, and the 
projected population change. 
 
GLUC projects three land use changes: 

• Undeveloped to low-density urban 
• Undeveloped to high-density urban 
• Undeveloped to permanent open 

 
GLUC is a spatially explicit raster-GIS based dynamic simulation model.  It works with a 
spatial resolution of 30 meters (30-meter raster GIS grid cells) and uses a time step of one 
year.  At each time step a hedonic modeling approach is used to identify the relative 
attractiveness (or value) of each grid cell for conversion from undeveloped to each of the 
three developed uses and uses a probability function to select cells that will change to 
meet the predefined population increases. 

Caveats 
Only the three land use changes are predicted meaning that GLUC will not address 
questions of urban decline in a city or a region.  Although different socioeconomic 
classes are attracted to develop in different areas, GLUC does not directly accommodate 
such differences.  Through calibration of the model relative overall attractiveness for 
development across the entire local population can be adjusted, but GLUC will not grow 
nor distinguish between different types of neighborhoods.  Demand for transportation is 
not calculated during GLUC simulation runs nor are new transportation routes 
established (air, water, rail, or road).  Planners are encouraged to use GLUC to test for the 
relative consequences of such plans.  While road and highway transportation routes are 
considered, rail and water commuter routes are not.  Also, road networks cannot be 
phased-in.  Finally, GLUC is not optimized to predict detailed growth for a city, but 
rather general growth of a city within the context of its surrounding counties. 
 



 3 

GLUC is designed to provide quick and reasonable urban growth projections in the 10-50 
year time frame.  It does not take into account the effects of current investments in land 
for development purposes and the activities of investors to encourage local municipalities 
to provide the road and utility infrastructure to optimize such investments.  Therefore, the 
predictions of land development within the next 10 years are probably not optimal.  
GLUC computes relative attractiveness for land conversion based on a one-time planned 
road/highway network and location and size of employment centers (e.g. city centers). 
GLUC does not predict nor does it accommodate a phasing in of transportation networks 
or business centers.  Therefore, GLUC results after several decades (e.g. 50 years) may 
not be useful. 

User Requirements 
GLUC is written in the C programming language and was originally developed for Unix 
systems.  Its inputs are from raster GIS data.  Therefore, GLUC model users must be 
familiar with: 

1. Unix 
2. Compilation of Unix software 
3. Process for finding and retrieving software source code via the Internet 
4. Raster GIS data import, export, and analysis 

 
In addition, large models (e.g. 20 million active raster grid cells or more) are best run on 
high performance computing systems.  GLUC has been ported and is installed on a 
number of super computers at the Major Shared Resource Center (MSRC) site in 
Vicksburg, Mississippi and the Naval Oceanographic Laboratory at the Stennis Space 
Center.  Users of these site must be familiar with running software on these computers, 
and have secure logins to them. 

History 
GLUC is being developed as part of the LEAM (Landuse Evolution and Impact 
Assessment Model) suite of software and procedures.  LEAM was initially developed 
with an NSF grant to the Departments of Urban and Regional Planning and Landscape 
Architecture at the University of Illinois at Urbana-Champaign.  Dr. Brian Deal directed 
the development of LEAM as part of his doctoral dissertation and now directs the LEAM 
lab (http://www.LEAM.uiuc.edu).  LEAM has been successfully been used to evaluate 
and report urbanizing patterns around a number of cities as well as social, economic, and 
ecologic consequences of the growth.  LEAM is a process that involves the development 
and operation of a landuse evolution model, evaluation of projected landuse patterns 
using a GIS, and posting of the results through interactive Web-based interfaces. 
 
GLUC development focuses the GLUC landuse evolution modeling on the problem of 
urban encroachment near military installations.  The landuse projections can be evaluated 
with respect to both impacts on existing or planned use of military installation training 
and testing areas and loss of long-term installation training and testing opportunities.  
These analyses are not covered in this document. 



 4 

Software Requirements 

GLUC 
GLUC is a publicly available software code written in the C programming language. 

GIS 
GLUC is raster-GIS based and the GLUC modeler may choose from any of a number of 
systems – including the public-domain GRASS system.  Using the raster GIS, modelers 
must process nationally available GIS data to create the input maps required to run 
GLUC. 

Data 
GLUC has been developed to allow for basic models to be created using raster GIS data 
readily available for anywhere in the United States.  Local data – especially information 
about scenarios to be tested can augment the development of the GLUC input maps. 

Web site 
GLUC is part of the Army Corps of Engineers’ Sustainability, Encroachment, and Room 
to Maneuver (SERM) efforts, which can be found at 

http://www.cecer.army.mil/KD/SERM  
 
This site contains: 

1. The GLUC software 
2. GLUC binaries for high performance supercomputers 
3. Models developed for military installations 
4. Manuals and other documentation 
5. User feedback opportunities 

 
To prepare to use GLUC, potential users must become familiar with the following: 

1. UNIX 
2. Raster GIS operations 
3. GLUC 



 5 

Modeling Steps 

Overview 
The successful application of GLUC to challenges related to military installation 
encroachment requires the commitment of a multidisciplinary team that can successfully 
work with a multi-stakeholder community, and run cutting-edge Unix-based software.  
The following table outlines an ambitious schedule that can result in the generation of 
useful feedback to stakeholders on the potential long-term implications of proposed land 
management investments and policies. 
 
Activity Estimated  FTE Time 
Coordinate with local communities 1 to 2 weeks 
Acquire and compile GLUC 1 day 
Acquire data Days weeks 
Prepare GLUC input maps 1 week 
Setup GLUC  1 day 
Calibrate  
Run GLUC 1 day to 2 weeks 
Review Results 1 day to 1 week 
Table 1: Modeling steps 
Each of these steps if developed in detail below. 

Coordinate with Local Community 
GLUC helps answer the question “If we invest in these regional infrastructure projects, 
support this zoning plan, and purchase properties for these purposes, how will urban 
development proceed across the landscape 10-50 years form now?”  Local communities 
and municipalities involve many stakeholders that carry dreams of what the region should 
look like in the future and have ideas of how to achieve those dreams.  The primary 
purpose of GLUC is to test these ideas with respect to the potential for achieving desired 
future land use patterns.  Therefore any useful GLUC simulation runs must begin and end 
with community participation.  It begins with extracting an understanding of competing 
proposals for land planning investments and policies and ends with comparisons of how 
well the proposals can achieve the desired future state. 

Acquire and compile GLUC 

GIS 
GLUC is fundamentally raster GIS based.  A raster GIS will be required to prepare, 
manipulate, and display results.  A GRASS script (in the form of a Unix makefile) is 
available to prepare the GLUC input maps.  Potential users are encouraged to use  



 6 

Acquire and Install GLUC 
The GLUC source code can be downloaded from http://www.cecer.army.mil/kd/serm.  
Instructions are available with the source for compiling on a variety of machines. 

Acquire Data 
GLUC was developed to allow for inexpensive analyses of the impact of proposed 
regional investments and policies on future urban patterns.  As such, it was designed to 
depend on nationally available data sets.  The information below will help a modeler find 
the base data that will support GLUC analyses. 

GIS 
GLUC is raster GIS based and was designed to make use of nationally available data.  
GLUC, however does not make direct use of this data; instead, the data must be 
meticulously processed using your raster GIS.  Therefore, the actual data used to create 
the required GLUC input files can be of the users choosing.  However, the following 
sources for data maps are recommended: 

Land Cover Maps 
Land Cover maps can be downloaded from the USGS (http://seamless.usgs.gov/). 
Pick a rectangular region of interest using a mouse and download. The maps are 
in a TIFF file format and provide land cover using the National Land Cover Data 
(NLCD) classification system (http://landcover.usgs.gov/classes.html).  The maps 
are available at 1:24,000 scale and 30-meter spatial resolution. 

Digital Elevation Maps 
Seamless national DEM maps are also available from the USGS 
(http://seamless.usgs.gov/). Oncedownloaded, each zipped file becomes a grid by 
unzipping. Data is at 1:24000 scale and 30-meter spatial resolution.   

Boundary Maps 
County and incorporated places (municipal) maps are required.  County 
boundaries are available from the U.S. Census Bureau 
(http://www.census.gov/geo/www/cob/co2000.html). They are sorted by FIPS 
code. Incorporated places data are available for download at 
http://arcdata.esri.com/data/tiger2000/tiger_download.cfm. In addition population 
data for urban areas is required and available from the website. 

Road Network Map 
Road networks are available from the U.S. Census Bureau and can be downloaded 
at http://arcdata.esri.com/data/tiger2000/tiger_download.cfm.  Included with these 
maps is a classification code (CFCC) designating limited-access hwy (A1), US 
route (A2), state route (A3) and roads and streets (A4).  A scale of 1:24,000 is 
preferred.  Ramp information (A6) for limited-access roads is also included. 

Ownership Property Map 
These areas represent areas that may be unavailable for development because of 
long-term government control for example Parks, Nature Preserves, Military 
Bases, Federal Lands, and Indian Reservations.  This information is available 
from a variety of organizations including USGS, DoD, BLM, etc. Landmark data 
from http://arcdata.esri.com/data/tiger2000/tiger_download.cfm covers most of 
undevelopable lands. 



 7 

Floodplain Map 
Development is restricted from floodplains.  Flood Hazard Boundary Maps are 
limitedly available from FEMA (http://web1.msc.fema.gov/). Some local agencies 
have 100yr and 500yr flood zone data (e.g. 
http://www.isgs.uiuc.edu/nsdihome/webdocs/county.html for Illinois flood zone 
by county)  

Social 

Population 
GLUC urban growth predictions are based on projected populations.  Generally GLUC 
models are developed to work on areas that are a set of counties within one or more 
states.  The US Census Bureau provides historic population information at the county and 
census track level and population projections for states to 2025.  Such information can be 
found under http://www.census.gov.  By simply apportioning projected population to the 
area of interest based on the current population, a projection estimate can be established.  
Local estimates and/or more carefully developed population projection analyses can be 
conducted. 

Economic 
Are there any economic projections? 

Plans 

Zoning 
Local zoning plans can be collected to help identify where certain growth will be 
permitted. 

Property Purchases 
Planned property purchases designed to change growth patterns can involve outright 
purchase of property or simply purchase of development rights designed to establish 
future desired land use patterns.  Maps that capture the resulting property development 
potentials as a result of such purchases can be used to develop GLUC input maps. 

Roads and Highways 
A major driver of urban growth patterns is the development and upgrade of county roads, 
state and federal highways and limited access highways such as interstates.  Maps 
capturing alternative plans are essential to the development of the GLUC input maps that 
provide access to services. 

Prepare GLUC Input Maps 
The maps described above must be transformed into a set of maps with specific file 
names and contents.  Procedures and scripts for assisting in the transformation are 
described in Westervelt (2004).  The contents of the maps are briefly described below.  
All maps are raster-gis based, used 30-meter square gridcells, are in an equal-area 
projection, cover the same ground, and have the same number of rows and columns. 



 8 

Overview of Maps 

Boundary 
This map simply indicates the boundaries of GLUC simulation runs.  Each grid cell in 
which the model will be run is indicated with the number 1 and all other cells are given 
the value of zero. 

Metrobuffer 
Cells defined as within a growth sphere of influence are indicated with a 1, others are 
zero.  This map can capture the extent of the anticipated legal boundaries of cities over 
the course of a GLUC simulation. 

Nogrowth 
The nogrowth map is also a one-zero map.  Cells that cannot grow are indicated with the 
value of 1.  In the sample map below, the cells coded with a 1 are associated with 
interstate highway rights of way.  Other examples of no-growth cells are those associated 
with water, no-growth zones, parks, forests, nature preserves, etc.  This map is used to 
capture many alternative land management policies (e.g. zoning) and investments (e.g. 
purchase of property and/or property rights.) 

Landcover 
The National Land Cover Data (NLCD) classification system is used.  The raster map 
showing color-coded categories below use the NLCD category definitions found in the 
following table. 
 
The NLCD category numbers represent landcover as follows: 
11. Open Water 42. Evergreen Forest 
12. Perennial Ice/Snow 43. Mixed Forest 
21. Low Intensity Residential 51. Shrubland 
22. High Intensity Residential 61. Orchards/Vineyards/Other 
23. Commercial/Industrial/Transportation 71. Grasslands/Herbaceous 
31. Bare Rock/Sand/Clay 81. Pasture/Hay 
32. Quarries/Strip Mines/Gravel Pits 82. Row Crops 
33. Transitional 83. Small Grains 
41. Deciduous Forest 84. Fallow 
 85. Urban/Recreational Grasses 
 
Further details on these definitions can be found at: 

http://landcover.usgs.gov/classes.html 

Slope 
The slope map indicates the slope of the cell in degrees  



 9 

Forest_attractor 
The forest attractor is simply the straight-line distance to the nearest cell identified as 
having forest in the land cover map.  Cells containing forest are coded as 0 (zero distance 
to the nearest forest).  The cell size of the map below is 30-meters and the distances to 
nearby cells containing forest is obviously recognizing this cell size. 

Water_attractor 
The water attractor map is identical in concept to the forest attractor.  In the sample map 
portion displayed here there is a body of water above the area just to the left of center. 

Highway_attractor 
This and the following three maps identify the driving time in minutes to the nearest state 
highway, intersections of open roads, limited-access highway ramps and main roads.  The 
creation of these maps relies on the development of a cell-traversal travel time map.  
Then, GIS analyses that identify the minimum travel time to the respective resources are 
conducted to create these four maps.  In the images below, black represents zero travel 
time and the whiter the cell, the greater the travel time.  The pure white areas indicate no-
growth locations and hence. 

Intersection_attractor 
Driving time in minutes to enter the nearest intersection.  An intersection represents an 
opportunity to go in a completely different direction and assumes that proximity to 
intersections is attractive. 

Ramp_attractor 
Driving time in minutes to enter the nearest limited access highway (e.g. interstate 
highway). 

Road_attractor 
Driving time in minutes to the nearest main road. 

Cities_attractor 
The cities attractor map denotes driving time to the nearest employment centers 
(municipalities). Because there are many municipalities in a study area, they are grouped 
into a few categories by population (e.g. large, medium and small cities). Attractor map is 
created for each group of municipalities by the same way as road attractor maps. 
Attractor map for each group is given different weights. 
 

General Approach for Creating GLUC Input Maps 
The GLUC modeler must develop the input maps (shown above) for their area of interest.  
There are many approaches that can be used and users are encouraged to explore options 
and opportunities.  However, the following figure suggests the maps that might be used to 
create the GLUC input maps (identified along the right side).  The grey-background maps 
along the left side are locally specific user maps that capture plans that GLUC will test 



 10 

with respect to anticipated urban growth.  Those without the grey background represent 
the generic nationally available maps.  Two temporary maps (bottom center) are 
suggested as important steps in the process of creating attractiveness maps that consider 
driving time on the current and planned road/highway network.  One is simply a 
description of the driving time required to cross each 30-meter square cell and is used to 
generate several needed images.  The other indicates the fundamental economic draw of 
cities and their associated job and commercial centers. 

Zoning

Plan

Property

Purchase

Plan

Highway
Plan

Land Use

DEM

Municipal

Boundaries

Roads and
Highways

Land Use

Floodplain

Slope

Ownership

Metrobuffer

No Growth

Water
Attractiveness

Forest
Attractiveness

Highway
Attractiveness

Cities
Attractiveness

County Road
Attractiveness

Ramp
Attractiveness

Boundary

Intersection
Attractiveness

Travel Time
 

Figure 1: Converting Raw Maps to GLUC Input Maps 
Most of the map processing is straightforward.  Creation of the slope map requires 
running standard slope-aspect analysis models available in most raster GIS packages.  
The boundary map is simply an overlay identifying the counties involved in the 
simulation process.  Similarly, the Metrobuffer map is a 1-0 map identifying the extent of 
anticipated edges of cities through the course of a simulation.  These, and the no-growth 
map are most challenging with respect to extracting agreement from the user community.  
Forest and water attractiveness are simply proximity analyses that give distance from 
each cell to the closest cell containing forest or water.   



 11 

 
The road, highway, ramp, and intersection attractiveness maps are based on the travel 
time to drive to these features.  A travel time map is first developed, which identifies the 
time (in minutes) required to traverse each cell.  Artificially high values are assigned to 
such areas as water, permanent easements for limited access roads/highways, and 
railroads to essentially indicate that passage is impossible.  Using a raster GIS cumulative 
cost function, this map can be used to generate the various travel-time based 
attractiveness maps. 
 
The most challenging, and perhaps the most important, input map to generate is the 
cities_attractor map.  This map captures the notion of travel time to jobs and shopping.   

Setup GLUC 

Acquire GLUC Configuration Files 
GLUC must be installed and working on your Unix-based computer at this point.  Sample 
GLUC configuration file information can be downloaded by starting at the SERM web 
site at: http://www.cecer.army.mil/KD/SERM.  Follow the links here to GLUC where the 
GLUC model, associated configuration file, and installation data files will be found.  
These are available as compressed archive files.  If you are developing a completely new 
GLUC model, use an available working configuration file as an example. 

Create a GLUC Project Under GLUC 
Begin by choosing a location in your system’s directory structure that has plenty of room.  
GLUC map input and output files take up the most space.  Models can easily involve 10-
100 megabyte map files.  With about a dozen input maps and at least two output maps for 
each of many runs, you should select a location with the ability to hold at least 5 
gigabytes of data. 
 
GLUC works with a specific arrangement of files and directories (Figure 2 and Appendix 
A).  The project directory is the location where the GLUC file structure will be built to 
hold all associated files in a specific arrangement.  The project is essentially the location 
for which the GLUC model is being built.   
 



 12 

Project Path

Project

One or more

configuration

files

Config DriverOutputData

MapsMap

initialization

files

Map output

files

 
Figure 2: GLUC Model Directory Structure 
 
To begin, you must create the directory structure and place an appropriate configuration 
file and input map files into the Config and Data directories. 

Install Input Data 
You must place your raster GIS data files into the GLUC model directory structure so 
that the model configuration file can point the model to them.  GLUC models can, 
depending on how GLUC was configured and built on your machine, read GIS map data 
from different types of files.  The instructions below are for MAP II GIS data files.  MAP 
II was a Macintosh based GIS system which may no longer be available.  The map 
format however is relatively generic.  Each map consists of two files: a binary map file 
holding integer categories using one to four bytes per grid cell (GLUC only uses one and 
four-byte files), and a header file identifying the binary file, the number of rows and 
columns in the map and the number of bytes per cell.  A sample header file looks like 
this: 

FILETYPE=INTERCHANGE 
ROWS=4045 
COLUMNS=4810 
CELLSIZE=1 
UNITS=M 
FORMAT=BIN 
SIZE=4 
LOCATION=˝fb_forest_att.bin˝ 

 
The only differences in header files from map to map will be the ROWS, COLUMNS, 
SIZE, and LOCATION.  And, maps being used in any single GLUC run must have the 
same number of ROWS and COLUMNS.  The LOCATION is the name of the 
corresponding binary map.  An excellent double check of the file is to multiply the 
ROWS, COLUMNS, and SIZE values and compare with the actual byte size of the file 



 13 

identified in LOCATION.  Most raster GIS software systems have the ability to generate 
the binary file,, especially for 1-byte per cell files.   

Install and Edit Configuration File 
The final step to be completed before running a GLUC model is to edit the configuration 
file.  If you are running a downloaded model you will have a configuration file that 
matches the input data files and it will be best to start with it.  Place the downloaded data 
files in the Data folder and copy the configuration file to the Config directory under your 
project. 
 
The configuration file is in ASCII format and is human editable and provides access to all 
of the variables associated with a GLUC model.  You can easily reset any variable to a 
fixed value or to values provided in the GIS maps.  You can also arrange to have 
variables displayed during a simulation run and/or stored on disk for later analysis.  To 
provide a head start, here are some translations of some of the configuration file entries: 
 
“Global” information is provided on a line that begins with a “#” symbol.  Example: 

# global  DS(1.0,0) n(1) s(4332) ngl(1) op(0) OT(1,0,38) d(0) UTM(0,0.0,0.0) 
The information currently used from this line is as follows: 

• s(4332)  - the “s” indicates that the following argument is the seed for the random 
number generator 

• OT(1,0,38) – “OT” introduces the time between model time steps, the start time, 
and the ending time 

• d(0) – “d” is used to identify the level of debug information.  The higher the 
value, the more debugging.  Generally users should use “0”. 

The remainder of the information is currently ignored, but may be used in the future.   
 
“Module” parameters are introduced with a line that begins with the dollar ($) sign.  
Example: 
 

$ my_module   g(M, boundary.m2, default) AL(0,0) d(0) 
 
This can be deciphered as follows: 

• The initial string is the module name 
• g(M, boundary.m2, default) – the first and third arguments are ignored.  The 

second points to the MapII file that contains the map showing which cells will be 
active in the simulation. 

The remainder of this line is currently ignored. 
 
Most of the configuration file contains variable information and these lines each begin 
with an asterix (*).  Many, if not all of the variables used in the GLUC model are listed 
and it is best to begin with a preexisting configuration file.  Excerpts below provide a 
look at the argument options: 
 

* BUFFER_MAP c(M, cityBuff.m2) 
* CITIES_ATTRACTOR_MAP d(M, cities_att.m2) 



 14 

* FINAL_LAND_USE M(M, 1, summary) 
* LAND_USE s(1) sC(C) M(M, 10, base) 
* DICE r(s) 
* NEW_COM_PROJECTED ft(u) 
* OPEN_INIT pm(62738) 

 
Only a few of the arguments are currently used as follows: 

• pm(1234) – This indicates that the variable is a fixed parameter and will be set 
with the associated number. 

• c(M, map.m2) and d(M, map.m2) – Indicates that the variable is to be set from 
maps found in the “Data” directory under the project with the associated map 
name.  The “M” argument indicates a MapII format file, but currently no other 
formats are supported.  The “c” and “d” versions are currently treated identically. 

• M(M, 10, base) – This expression indicates that the associated variable is to be 
written out in MapII format.  The second argument indicates the scale and the 
third is the map name. 
 

The remainder of the arguments is currently ignored. 

Calibrate 
To be written. 

Run GLUC 
Running GLUC, assuming all has gone well with the steps leading up to this point, is a 
simple matter using the command “gluc”.  Entering “gluc –help” results in the following: 
 

Usage: ./gluc [SME options] [options] 
 
SME options: 
 -ppath <path> : sets the project path 
 -p <project>  : sets the project name (directory under project path) 
 -ci <config>  : specify the configuration file 
 
Options: 
 --newk         : turns on improved K factor (default) 
 --oldk         : turns on the old version of K factor 
 --resoff       : turns off residential development 
 --comoff       : turns off commercial development 
 --osoff        : turns off openspace development 
 --eqrows       : distribute rows equally across processors 
 --eqcells      : distribute cells equally across processors 
 -r || --random : randomly seeds random number generator 
 -f || --final  : generates only final landuse and change map 
 -d || --debug  : turns on debugging information 
 -h || --help   : display this information 

 



 15 

Using command line arguments you point gluc to the location of projects (a directory), 
your project (a directory in the location directory), and a configuration file that will be 
found in the Config directory under your project.   

Review Results 
After running, any results you’ve asked for (via the configuration file) will be in the 
folder: 

../DataOutput/Maps 
These are in the format you requested (MapII is recommended) and you can import them 
into your GIS for viewing and post-processing and analysis.  The MapII format is simple.  
Each map is associated with two files – a header file and a map file.  The header file 
contains ascii information about the number of rows and columns, the number of bytes 
per pixel, and the name of the map file.  The map file is a binary file containing integers 
that is exactly the number of rows times the number of columns times the number of 
bytes per pixel long (in bytes).  For example a 100 row by 100 column map of pixels that 
have values encoded in 2 bytes per pixel is 100 * 100 * 2 = 20000 bytes in size. 
 
One way to view the maps is to turn them into more standard formats using the PNM 
image processing suite (Unix freeware).  The following script can be used to assist in the 
conversion to GIF format files: 
 

#!/bin/csh -f 
 
# map2gif - 
# Convert MapII file to GIF using a netpbm pipeline.  Images are created 
# at the full resolution of the MapII file. 
 
if ($#argv == 0) then 
   echo Usage: $argv[0] <MapIIfile> [<outfile>] [<palette>]   
   echo <outfile>: defaults to the MapII file with .gif as a replacements 
   echo           extension. 
   echo <palette>: defaults to mLEAM standard palette 
endif 
 
set fin=${1} 
if ( ! -r $fin ) then 
    echo MapII file $fin does not exist or is unreadable 
    exit(-1) 
endif 
 
# set output file from command line or create from input file 
if ($#argv > 1) then 
    set fout = ${2} 
else 
    set fout = $fin:r.gif 
endif 
 
# set palette file from command line or use default (ugly) 
if ($#argv > 2) then 
    set pal = ${3} 



 16 

else 
    set pal = ./mleampal.ppm 
endif 
 
# parse the values from the header file 
set x = `sed -ne 's/^COLUMNS=//p' ${fin}` 
set y = `sed -ne 's/^ROWS=//p' ${fin}` 
set bytes = `sed -ne 's/^SIZE=//p' ${fin}` 
set loc = `sed -ne 's/^LOCATION=//p' ${fin} | tr -d "\307\310"` 
 
# WARNING: we should should do something clever about working 
# with the number of bytes per cell.  We currently ignore this 
# and assume 1 byte per cell. 
 
# if path given prepend to binary file 
if ($fin:h != $fin:t) then 
    set loc = $fin:h/$loc 
endif 
 
# create the binary file if necessary 
if ( ! -r $pal ) then 
set pal = ./mleampal.ppm 
uudecode << 'PAL' 
begin 640 mleampal.ppm 
M4#8*,C4V(#$*,C4U"LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
M9C/,_\R99LR99LR99LR99LR99LR99LR99LR99LR99O__9O^9,\PS`````,R9 
M9LR99LR99LR99LR99LR99LS,_\QF_\QFF<R99LR99LR99LR99LR99LR99LR9 
M9C/,`#-F,S.9`,R99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
M9LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
M9IG,F<R99LR99LR99LR99LR99LR99LR99LR99LR99LS,F9EF,YF99LR99LS, 
M9LR99LR99LR99LR99LR99F;,F6;,S,R99LR99LR99LR99LR99LR99LR99LR9 
M9LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
M9LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
M9LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
M9LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
M9LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
M9LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
M9LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
M9LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
M9LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
M9LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR99LR9 
09LR99LR99LR99LR99LR99LR9 
` 
end 
'PAL' 
endif 
 
# use netpbm tools to covert binary file to gif 
rawtopgm ${x} ${y} ${loc} | pgmtoppm -map $pal | ppmtogif > $fout 
#rawtopgm ${x} ${y} ${loc} |  ppmtogif > $fout 

 



 17 

Running GLUC on Super Computers 
It is assumed that you, the reader of this section: 

• have successfully run GLUC on a local single-processor computer 
• have acquired a login to a HPC machine on which GLUC has been installed 

and compiled 
• are familiar with the local Mass Storage Facility (MSF) 
• are familiar with the local Load Share Facility (LSF) 

 
At the time this was written, the information was correct for running GLUC on the 
HPC MSRC located at the ERDC Information Technology Laboratory (ITL) in 
Vicksburg, Mississippi. 

 
GLUC, when run on large areas requires the use of high performance computers.  The 
Department of Defense High Performance Computing Initiative funded the porting of 
GLUC to a number of computers.  Binary GLUC executables for these computers are 
available at the GLUC Web site.   
 

ERDC MSRC HPC-GLUC Tutorial 
These instructions are for the COMPAQ (emerald) and SGI Origin (ruby) computers at 
the ERDC MSRC.  As described above, running GLUC involves bringing MapII format 
input data maps and a configuration file together within a specific file structure and then 
invoking a compiled version of gluc with arguments that point to this information.  For 
the COMPAQ and SGI Origin machines at the MSRC, sample configuration and data 
files are available on the associated mass storage device along with a csh script that 
automates the entire process of running gluc on the sample data and scenarios. 
 
Before running the software you must have a login to the machines and be familiar with 
the procedures for submitting, monitoring, and retrieving results of HPC jobs.   
 
The following simple steps provide a way for you to load and run the LEAM GLUC 
program on a variety of pre-developed data based with pre-developed configuration files.  
Once you are logged in, the first step is to get a copy of the script, mLEAM.csh, into your 
directory using the command: 
 

archive get -C /erdc2/jefft mLEAM.csh 
 
A version of this script is found in Appendix B, but continual developments and 
refinements require you to retrieve a copy of the latest version.  Next, edit the script and 
follow the internal instructions.  There are several decisions that you must capture in your 
edits: 

1. Choose your request for HPC resources that includes number of processors, 
amount of memory, maximum amount of run time, etc. 

2. Choose a directory name for running the program and capturing the results 



 18 

3. Choose a sample configuration (and, indirectly, sample data) 
 
Finally you can run the script.  The GLUC directory structure is automatically created 
and initialized in your work directory (e.g. /Work/your-login-name) with data and 
configuration file.  The gluc program is run with appropriate arguments and the results 
may be found in the directory structure under “DriverOutput”.  Inspection of the 
mLEAM.csh script will help you develop your own data sets and run gluc using 
information in the previous sections of this document. 
 
Further information about the LEAM GLUC software, manuals, data, and configuration 
files may be found at http://www.cecer.army.mil/KD/SERM. 



 19 

Appendix A: GLUC’s Files 
 
Directory/File Notes 
./Config:  
  base.conf 
  high.conf 
  low.conf 
  uber.test 

User editable 
gluc 
configuration 
files 

  
./Data:  
  boundary.bin 
  boundary.m2 
  cities_att.bin 
  cities_att.m2 
  forest_att.bin 
  forest_att.m2 
  highway_att.bin 
  highway_att.m2 
  intersection_att.bin 
  intersection_att.m2 
  landcover.bin 
  landcover.m2 
  metrobuffer.bin 
  metrobuffer.m2 
  nogrowth.bin 
  nogrowth.m2 
  ramp_att.bin 
  ramp_att.m2 
  road_att.bin 
  road_att.m2 
  slope.bin 
  slope.m2 
  water_att.bin 
  water_att.m2 

Raster map 
files.  The 
.m2 files are 
short ascii 
header files 
for the .bin 
files.  The 
.bin files 
have a byte 
size equal to 
the rows times 
columns * 
bytes per 
cell.  Actual 
file names are 
specified in 
the 
configuration 
file 

  
./DriverOutput:  
  /Maps  
    summary.bin 
    summary.m2 
    change.bin 
    change.m2 

Result maps in 
.m2 format.  
Actual names 
are specified 
in the 
configuration 
file. 

 



 20 

Appendix B: Sample GLUC Execution Script 
Sample csh script for submitting GLUC runs on the ERDC MSRC SGI Origin 3000 
(ruby) and the Compaq SC45 (emerald): 
 
 
#!/bin/csh 
 
## Last Modified: Mon Oct  6 11:26:08 CDT 2003 
##################################################################### 
##################################################################### 
# This script was specifically prepared to support the October 2004 
# Beta Test of the mLEAM software running on two HPC machines at 
# the ERDC MSRC.  The effort is supported by the DoD's HPCMP through 
# the CHSSI program. 
# 
# Information about mLEAM can be found through: 
#  http://www.cecer.army.mil/KD/SERM (click on mLEAM) 
# 
# In the top part of this script, set variables as instructed.  The 
# bottom part uses these variables to run mLEAM. 
# 
# The latest copy of this script can be retrieved with the 
# following command from any ERDC MSRC machine: 
#   archive get -C /erdc2/jefft mLEAM.csh 
 
 
##################################################################### 
##################################################################### 
# If you are running on a Compaq or Origin, modify the following 
##################################################################### 
# Modify these Load Sharing Facility (LSF) options as necessary: 
#  account (-P) 
#  number of processors (-n) 
#  memory in kilobytes (-M) 
#  maximum wall clock time in minutes (-W) 
#  job name (-J) 
#  output file (-o) 
# By convention, set the job name (-J) and output file (-o) 
# to match the project name. 
#BSUB -P erdcvenq 
#BSUB -n 2 
#BSUB -M 8000000 
#BSUB -W 180 
#BSUB -o sample-1.o 
#BSUB -J sample-1 
 
# If you are running under LoadLeveler (NAVO IBM, etc) set these... 
##################################################################### 
# Modify these LoadLeveler options as necessary: 
#  account_no 
#  number of processors (-r) 



 21 

#  Queue (-q) 
#  maximum Cray MPP processing elements (-l mpp_p) 
#  maximum per-process CRAY wall-clock residency time (-l p_mpp_t) 
#  maximum per-request CRAY wall-clock residency time (-l mpp_t) 
# @ shell = /bin/csh 
# @ account_no = ERDCVenq 
# @ environment = ENVIRONMENT=BATCH; COPY_ALL 
# @ output = leam1.out 
# @ error  = leam1.error 
# @ network.MPI = csss,not_shared,US 
# @ job_type = parallel 
# @ job_name = leam1 
# @ node = 4 
# @ total_tasks = 32 
# @ node_usage = not_shared 
# @ wall_clock_limit = 5:00:00 
# @ class = batch 
# @ queue 
 
 
##################################################################### 
# Number of processors to be used during the run.  This number must match 
# the "#BSUB -n" argument above. 
# 
setenv MP_SET_NUMTHREADS 32 
 
##################################################################### 
# Set the project name.  Project name will be used to create the 
# current working directory under ${WORKDIR}.  If ${WORKDIR}/${project} 
# exists files may be overwritten so it's best to choose a unique 
# project name for each model run. 
set project=sample-1 
 
##################################################################### 
# Set the configuration file name by uncommenting one of the lines below. 
# Each configuration file describes a specific scenario. 
# Associated data files are also automatically identified and retrieved 
# based on the name of the configuration. 
# (e.g. sample_base.conf is associated with sample.data.tar) 
# 
#### Small sample scenarios to start out your experimentation  
#set config=sample_base.conf 
set config=sample_xmdf.conf 
#set config=small_3p.conf 
#set config=small_10p.conf 
 
#### Army Installation Scenarios 
#------- Fort Benning, Georgia 
#set config=fbenning_base.conf 
#set config=fbenning_high.conf 
#set config=fbenning_low.conf 
#set config=fbenning_uber.conf 
#set config=fbenning_xmdf.conf 



 22 

#------- Fort Bragg, North Carolina 
#set config=fbragg_base.conf 
#set config=fbragg_high.conf 
#set config=fbragg_low.conf 
#set config=fbragg_uber.conf 
#set config=fbragg_xmdf.conf 
#------- Camp Ripley, Minnesota 
#set config=cripley_base.conf 
#set config=cripley_high.conf 
#set config=cripley_low.conf 
#set config=cripley_uber.conf 
#------- Fort Carson, Colorado 
#set config=fcarson_base.conf 
#set config=fcarson_high.conf 
#set config=fcarson_low.conf 
#set config=fcarson_uber.conf 
 
#### These are scenarios for St Louis, MO and East St Louis, Illinois 
#------- Standard runs with low, medium, high, and very high (uber)  
#        population projections 
#set config=stlme_base.conf 
#set config=stlme_high.conf 
#set config=stlme_low.conf 
#set config=stlme_uber.conf 
 
#### These are scenarios for Peoria, Illinois 
#------- Standard runs with low, medium, high, and very high (uber)  
#        population projections 
#set config=tc_base.conf 
#set config=tc_high.conf 
#set config=tc_low.conf 
#set config=tc_uber.conf 
#------- Agriculture preservation scenarios 
#set config=tc_agpreserv_base.conf 
#set config=tc_agpreserv_high.conf 
#set config=tc_agpreserv_low.conf 
#------- River bluff protection scenarios 
#set config=tc_bluff_base.conf 
#set config=tc_bluff_high.conf 
#set config=tc_bluff_low.conf 
#------- Facility Planning Areas (FPA) scenarios 
#set config=tc_fpa_base.conf 
#set config=tc_fpa_high.conf 
#set config=tc_fpa_low.conf 
#set config=tc_grcell_base.conf 
#set config=tc_grcell_high.conf 
#set config=tc_grcell_low.conf 
#------- An interstate bypass scenario 
#set config=tc-ringroad_base.conf 
#set config=tc-ringroad_high.conf 
#set config=tc-ringroad_low.conf 
#------- A proposed State highway scenario 
#set config=tc-sr29_base.conf 



 23 

#set config=tc-sr29_high.conf 
#set config=tc-sr29_low.conf 
 
##################################################################### 
# Set the archive variable if you wish to automatically copy 
# the new map files to the mass storage system after the 
# application completes.  Files will be stored in a tar file 
# called $(project).results.tar 
 
#set archive= 
 
##################################################################### 
##################################################################### 
# ----- The following lines should not need to be changed ----- 
 
# Set the machine architecture where the batch job will run. 
# This allows the correct executable to be retrieved.  Possible 
# options for this variable are currently 'IRIX64', 'OSF1', and 
# 'AIX' (IBM Power4).  
 
set arch=`uname` 
 
# Set the base name of the program to be executed.  Generally 
# this only needs to be set when testing new executables.  If  
# the program variable is not set then it is automatically  
# set by extracting it from the configuration file. 
 
set program=glucx 
 
# Set the input data tar file name.  This can generally be 
# guessed from the configuration file name provided above.  Because 
# configuration files and data files must correspond, care 
# must be taken when overriding this variable. 
 
#set input= 
 
# Set the default mass storage directory.  Everything is 
# currently stored in /erdc2/jefft 
 
set mssdir=/erdc2/jefft 
 
##################################################################### 
##################################################################### 
# ----- DO NOT EDIT BELOW THIS LINE ----- 
 
# Set Runtime Environment 
setenv MPI_TYPE_MAX 8192 
 
# Build the SME Runtime Directory Structure 
set wdir=${WORKDIR}/${project} 
mkdir ${wdir} 
cd ${wdir} 
mkdir Config Data Driver DriverOutput DriverOutput/Maps 



 24 

 
# Retrieve the Configuration File 
cd ${wdir}/Config 
msfget ${mssdir}/${config} 
 
# Retrieve the Input Data 
cd ${wdir}/Data 
if ( $?input == 0 ) then 
   set input=`echo $config | sed -e 's/[_.].*//'` 
endif 
msfget ${mssdir}/${input}.data.tar 
tar xf ${input}.data.tar 
rm ${input}.data.tar 
 
# Retrieve and Run the Application 
cd ${wdir}/Driver 
if ( $?program == 0 ) then 
    set program=`echo $config | sed -e 's/[_.-].*//'` 
endif 
 
set args=(-f -d --newk  -ppath ${WORKDIR} -p ${project} -m leam -ci ${config}) 
switch ( $arch ) 
    case IRIX64: 
        msfget ${mssdir}/${program}.IRIX64 ${program} 
        chmod a+rx ${program} 
        time mpirun -np ${MP_SET_NUMTHREADS} ./${program} ${args} 
        breaksw 
    case OSF1: 
        msfget ${mssdir}/${program}.OSF1 ${program} 
        chmod a+rx ${program} 
        time prun -n ${MP_SET_NUMTHREADS} ./${program} ${args} 
        breaksw 
    case AIX: 
        breaksw 
    default: 
        echo "ERROR: unknown architecture ${arch}" 
        exit 
endsw 
 
# Preserve the Results 
cd ${wdir}/DriverOutput/Maps 
if ( $?archive ) then 
    tar cf ${project}.results.tar * 
    msfput ${archive}/${project}.results.tar 
endif 


